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1. INTRODUCTION

Let [Q� n] be the sequence of monic polynomials, deg Q� n=n, which are
orthogonal with respect to the Sobolev inner product on the unit circle
1=[! # C : |!|=1],

( p, q) W
2
1(+0 , +1) :=|

1
p(!) q(!) d+0(!)+|

1
p$(!) q$(!) d+1(!), (1)

where +i , i=0, 1, are positive Borel measures supported on 1 and +1 is
absolutely continuous with respect to the Lebesgue measure, and its
Radon�Nikodym derivative is positive and smooth. In this paper, we study
the strong (or Szego� -type) asymptotics of the polynomials orthogonal with
respect to (1).

More precisely, we assume that

(i) +0 is an arbitrary positive Borel measure on 1
(ii) +1 is absolutely continuous with respect to the Lebesgue measure, and

(2)
d+1(!)

|d!|
=\1(!) with \1(!)>0 for ! # 1

and

\1 # C 1+(1 ).

The last condition in (2) means that the derivative of \1 satisfies a
Lipschitz condition with some positive exponent.

Until recently the asymptotic properties of general Sobolev orthogonal
polynomials were considered only for the case when the measures corre-
sponding to the derivatives in the Sobolev inner product were discrete.
(For the case of Sobolev orthogonality on the interval [a, b] see [3, 7, 8];
for the case when 1 is the unit circle see [6].)

At the VIII Symposium on Orthogonal Polynomials and their Applica-
tions [9], A. Mart@� nez-Finkelshtein announced results on the strong
asymptotics of Sobolev orthogonal polynomials with respect to measures
supported on the interval [a, b] and on the unit circle. These results
generalize asymptotics of special Sobolev orthogonal polynomials on the
interval with respect to special measures (see [11�13]). In another
forthcoming paper (see [10]), the case of general smooth Jordan curves
and arcs is studied. To our knowledge, the author has been able to prove
strong asymptotics for Sobolev orthogonal polynomials on smooth curves
when both measures are in Szego� 's class. In the present paper, in com-
parison with [9] and [10], a bit more is required on the measure +1 , and
at the same time we obtain strong asymptotics even under very mild
assumptions on the first measure +0 .
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In [1] and [2], asymptotic properties of Sobolev orthogonal polyno-
mials on the unit circle, for the case when the measure +0 is general and
+1 is the Lebesgue measure on the unit circle, d+1(!)=|d!|, ! # 1, were
studied. The approach used there is easily generalized to the case when +1

is a Bernstein�Szego� measure. Standard techniques allow us to extend the
study to the case when +1 is absolutely continuous and sufficiently smooth.

The following theorem holds true:

Theorem 1. Let [Q� n] be the sequence of Sobolev orthogonal polyno-
mials on the unit circle 1, with respect to (1), with the measures (+0 , +1)
satisfying condition (2). Then, uniformly on compact subsets K of
0=[! # C : |!|>1], we have

Q� n(z)
zn � F1(z), when n � �, (3)

where F1 is the Szego� function corresponding to the weight \1 . That is,

F1(z) :=
D1(z)

D1(�)
, (4)

and D1(z) verifies

D1 , D&1
1 # H(0), D1(�)>0,

and

|D1(!)|2=
1

\1(!)
, ! # 1.

Theorem 1 follows from Theorem 2 below where the asymptotics for the
derivatives of polynomials Q� n is obtained.

Theorem 2. Let [Q� $n] be the sequence of derivatives of the Sobolev
orthogonal polynomials with respect to the inner product (1), with measures
satisfying condition (2). Then

(i) |
1 }

Q� $n(!)
n!n&1&F1(!) }

2

\1(!) |d!|=o \1
n+ ; (5)

(ii)
Q� $n(z)
nzn&1 � F1(z), n � �, uniformly on z # 0� =[z # C : |z|�1].

(6)

The proofs of Theorems 1 and 2 will be presented in the next two
sections.
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Now, we illustrate the theorems above with two examples of sequences
of polynomials [Q� n, 1], [Q� n, 2] which are orthogonal on the unit circle with
respect to the measures

Q� n, 1 : d+0(!)=d$a(!) and d+1(!)=|d!|, (7)

Q� n, 2 : d+0(!)=|d!|+d$a(!) and d+1(!)=|d!| (8)

(where $a is the Dirac delta measure with mass point at a, |a|=1). These
polynomials have explicit representations

Q� n, 1(z)=zn&an for n�1, Q� 0, 1(z)=1, (9)

Q� n, 2(z)=zn&
anHn&1(z, a)

1+Hn&1(a, a)
, (10)

where

Hn&1(z, y)= :
n&1

k=0

zky� k

1+k2 .

Indeed, it is easy to verify that for n�1 and k=0, ..., n,

|
1

Q� n, 1(!) !k d$a(!)+|
1

Q� $n, 1(!) k!k&1 |d!|

=Q� n, 1(a) a� k+|
1

n!n&1 k!k&1 |d!|=n2$n, k ,

and for n=0, �1 Q� 0, 1(!) d$a(!)=1.
On the other hand, it is known that the orthogonal polynomial sequence

with respect to the inner product (1) with d+0(!)=d+1(!)=|d!| is [zn],
with &zn&2

W
2
1(+0 , +1)=n2+1 and the n th kernel function is given by Hn(z, y)

defined above. Moreover, the Sobolev inner product (8) can be considered
as the modification of the previous one by adding a Dirac measure at a.
Therefore, we obtain (10), (see [4, p. 38]).

From this representation, it follows directly that for both families of
polynomials (9) and (10), the asymptotics (3) and (6) hold true with
F1=1. At the same time, the asymptotic formula (3) for these polynomials
cannot be extended uniformly up to the boundary of 0 (i.e., uniformly on
the unit circle 1 ). Indeed, for (9) this is obvious, and for (10), we have

}
Q� n, 2(ei.a)

(ei.a)n &1 }=
:

n&1

k=0

(e i.)n

1+k2

1+ :
n&1

k=0

1
1+k2

.
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So, at least for .=0, ?�2, ?, and 3?�2, we see that

lim
n � �

Q� n, 2(!)
!n {1 for !=ei.a.

The last circumstance is particularly interesting because the polynomials
(9) and (10) are uniformly bounded on 1. Again, for the polynomials Q� n, 1

it is trivial whereas

|Q� n, 2(!)|�1+

:
n&1

k=0

1
1+k2

1+ :
n&1

k=0

1
1+k2

<2, \n, \! # 1.

Thus, uniform boundedness of the polynomials on 1 and smooth boundary
values of F1(z) are not sufficient conditions for solving the Tauberian
problem (see [4, p. 75]), of extending the asymptotic relation (3) up to the
boundary 1 of 0. Perhaps more restrictive conditions on the measure +0

are needed.

2. PROOF OF THEOREM 2

Let [Qn] denote the monic orthogonal polynomial sequence with respect
to measure +1 . We recall an extremal property of monic orthogonal
polynomials with respect to the inner products in W 1

2(+0 , +1) and in
L2(+1),

&Q� n &2
(+0 , +1) :=(Q� n , Q� n) W

2
1(+0 , +1)=min

Pn

&Pn&2
(+0 , +1) , (11)

&Qn&2
+1

:=|
1

|Qn |2 \1(!) |d!|=min
Pn

&Pn&2
+1

, (12)

for any monic polynomial Pn(!)=!n+lower degree terms. Under the con-
ditions in (2) on measure +1 , the following asymptotics for the sequence of
orthogonal polynomials [Qn] hold (see [14]),

&Qn &2
+1

=m1+o \1
n+ , (13)

and uniformly on 0�

}Qn(z)
zn &F1(z) }=o \1

n+ , z # 0� , (14)
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where F1 is defined as in (4) and

m1=
2?

D2
1(�)

=&F1&2
+1

.

Also under the conditions in (2), (see [5]), the asymptotic formula can be
differentiated as

max
z # 0� }

d
dz \

Qn(z)
zn &F1(z)+}=o(1). (15)

Moreover, from (13) and (15), it follows that

&Q$n &2
+1

n2 =m1+o \
1

n+ . (16)

Indeed, to see that (16) holds true, we take into account that from (12)
and (13), we immediately have an estimate of (16) from below. That is,

m1+o \
1

n+=&Qn&1&2
+1

�
&Q$n &2

+1

n2 .

An estimate from above can be obtained by substituting uniform
asymptotics (15) on 1 into the left-hand side of (16) and taking into
account that under condition (2) the Szego� function is smooth on 1 (see
[16], Lemma 4.1):

F1(!) # C 1+(0� ). (17)

Indeed, from (15) it follows

"Q$n(!)
!nn "

2

+1

�"Qn(!)
!n&1 +

F $1(!)
n "

2

+1

+o \ 1
n2+ ,

and we obtain (16) because of

"Qn(!)
!n&1 +

F $1(!)
n "

2

+1

�"Qn(!)
!n&1 "

2

+1

+"F $1(!)
n "

2

+1

=m1+o \1
n++O \ 1

n2+ .

The same asymptotics are valid for the norms of the Sobolev orthogonal
polynomials.
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Lemma 1.

(i)
&Q� $n&2

+1

n2 =m1+o \1
n+ ; (18)

(ii)
&Q� n&2

(+0 , +1)

n2 =m1+o \1
n+ . (19)

Proof. From the extremal properties (11) and (12), we have

m1+o \1
n+=&Qn&1&2

+1
�

&Q� $n &2
+1

n2 �
&Q� n &2

(+0 , +1)

n2

�
&Qn &2

+0

n2 +
&Q$n&2

+1

n2 .

Because of (14), the sequence [Qn] is uniformly bounded, and by (16) we
conclude

&Qn &2
+0

n2 +
&Q$n&2

+1

n2 =O \ 1
n2++m1+o \1

n+ .

Thus, the lemma is proved. K

Proof of Theorem 2. The validity of the theorem follows from Lemma
1 using standard method. For assertion (i) (see (5)), we have

"Q� $n(!)
n!n&1&F1(!)"

2

+1

="Q� $n(!)
n "

2

+1

+&F1(!)&2
+1

&2R |
1

F1(!) \Q� $n(!)
n!n&1+ \1(!) |d!|.

The reproducing property of the Szego� function in the Hardy space H 2
\1

(0)
(see, for example, [16]) states that

\h(z) # H 2
\1

(0) O h(�)=|
1

F1(!)
m1

h(!) \1(!) |d!|.

Therefore, the integral in the equality above is equal to m1 . Thus, (15) and
(18) give us (5).

Assertion (ii) (see (6)) follows from (5). In fact, let us denote

Fn(!) :=
Q� $n(!)

n
&!n&1F1(!), and An :=max

1
|Fn(!)|.
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From the continuity of F1 on 1 and the definition of An , we have

max
1

|Q� $n(!)|=O(n(An+1)).

Now, applying the Markov�Bernstein�Szego� inequality to the second
derivative of Q� n , (see, for example, Lemma 2.1 in [16]) we obtain

max
1 } d

d!
Fn(!) }�1

n
max

1 } d
d!

Q� $n(!) }+max
1 } d

d!
(!n&1F1(!)) }�an(An+1),

(20)

for some positive constant a. Assume that !0 is such that An=|Fn(!0)| and
let e/1 be an arc centered at !0 # e with |e|=An �an(An+1). For any
! # e, from (20) we have that

|Fn(!0)|&|Fn(!)|�
An

2
,

which implies An�2�|Fn(!)|. Therefore, taking into account of (5), it
follows that

A3
n

4an(An+1)
min

1
\1�|

e
|Fn(!)| 2 \1(!) |d!|

�|
1

|F(!)|2 \1(!) |d!|=o \1
n+ .

Therefore, An � 0 as n � �. This, in turn, implies that

Q� $n(!)
n!n&1 � F1(!) uniformly for ! # 1, n � �.

Now, if we apply the Maximum Modulus Principle for analytic functions,
we deduce (6) and thus the theorem is proved. K

3. PROOF OF THEOREM 1

First, we obtain some auxiliary bounds on 1 for the Sobolev orthogonal
polynomials with respect to (1), with assumptions (2).
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Lemma 2. Let [Q� n] be the sequence of monic orthogonal polynomials
defined by (1) and (2). Then

max
1

|Q� n(!)|�O(n).

Proof. Let !0 be an arbitrary point on 1 and let !1, n be the point where

|Q� n(!1, n)|=min
! # 1

|Q� n(!)|,

then

|Q� n(!1, n)| 2 |
1

d+0(!)�|
1

|Q� n(!)| 2 d+0(!)�n2m1+o(n).

Notice that the last inequality follows from (19). Therefore,

|Q� n(!1, n)| 2�O(n2).

From (6), we have

max
1

|Q� $n(!)|<O(n). (21)

Then,

|Q� n(!0)|�|Q� n(!1, n)|+2? max
1

|Q� $n(!)|�O(n). (22)

Now, let !� n be such that |Q� n(!� n)|=max1 |Q� n(!)|. Thus, (21) and (22) give
us

|Q� n(!� n)|� } |
!� n

!0

Q� $n(!) d! }+|Q� n(!0)|�O(n).

With this we conclude the proof. K

From Lemma 2 and the Maximum Modulus Principle, we obtain:

Corollary 1. For any compact K/0, there exists a constant C(K ),
such that

max
z # K }Q

� n(z)
zn }<C(K ) n.
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Proof of Theorem 1. Let K be a compact subset of 0 and let z be an
arbitrary point in K. There exists r0 such that 1<r0<|z|, for all z # K.
Choose z0 in the segment joining z and 0 such that |z0 |=r0 . Let # be a
segment joining z0 and z, where |!|�|z|, for all ! # #. Then

Q� n(z)
zn =

1
zn |

#
Q� $n(!) d!+

Q� n(z0)
zn

0 \z0

z +
n

.

From Corollary 1, it follows that the last term tends uniformly to zero.
Applying Theorem 2 and using integration by parts, we have

1
zn |

#
Q� $n(!) d!=

1
zn |

z

z0

n!n&1(F1(!)+o(1)) d!

=
1
zn [zn(F1(z)+o(1))]

&
1
zn [zn

0(F1(z0)+o(1))]

&
1
zn |

z

z0

!n d
d!

(F1(!)+o(1)) d!.

Here, the second term tends uniformly to zero as n � � and the last
integral is estimated as follows. If z=rei. and z0=r0e i., then

1
|z|n } |

z

z0

!n d
d!

(F1(!)+o(1)) d! }
�

1
rn max

# } d
d!

F1(!) } |
r

r0

sn ds

=max
# } d

d!
F1(!) } \ r

(n+1)
&

r0

(n+1) \
r0

r +
n

+� 0, n � �.

The theorem is proved. K
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